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Abstract

In this paper we consider the problem of best-arm identification in multi-armed bandits in the fixed

confidence setting, where the goal is to identify, with probability 1− δ for some δ > 0, the arm with

the highest mean reward in minimum possible samples from the set of arms K. Most existing best-arm

identification algorithms and analyses operate under the assumption that the rewards corresponding to

different arms are independent of each other. We propose a novel correlated bandit framework that

captures domain knowledge about correlation between arms in the form of upper bounds on expected

conditional reward of an arm, given a reward realization from another arm. Our proposed algorithm

C-LUCB, which generalizes the LUCB algorithm utilizes this partial knowledge of correlations to

sharply reduce the sample complexity of best-arm identification. More interestingly, we show that

the total samples obtained by C-LUCB are of the form O
(∑

k∈C log
(
1
δ

))
as opposed to the typical

O
(∑

k∈K log
(
1
δ

))
samples required in the independent reward setting. The improvement comes, as the

O(log(1/δ)) term is summed only for the set of competitive arms C, which is a subset of the original

set of arms K. The size of the set C, depending on the problem setting, can be as small as 2, and hence

using C-LUCB in the correlated bandits setting can lead to significant performance improvements. Our

theoretical findings are supported by experiments on the Movielens and Goodreads recommendation

datasets.1

I. INTRODUCTION

The multi-armed bandit (MAB) problem falls under the class of sequential decision making

problems. In the classical multi-armed bandit setting, the player is asked to sample one of the

K arms at every round t = 1, 2, . . .. Upon sampling arm kt at round t, the player receives a

random reward Rt drawn from the reward distribution of arm kt. These reward distributions are

1Email ids: samarthg@andrew.cmu.edu, gaurij@andrew.cmu.edu, oyagan@andrew.cmu.edu
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Fig. 1: The ratings of a user corresponding to different versions of the same ad are likely to be

correlated. For example, if a person likes first version, there is a good chance that they will also

like the 2nd one as it also related to tennis. However, the population composition is unknown,

i.e., the fraction of people liking the first/second or the last version is unknown.

assumed to be unknown to the player, and the most commonly studied objective is to maximize

the long-term cumulative reward; e.g., see the early work by Lai and Robbins [1]. Since then,

the reward maximization problem has received attention in both classical settings [2], [3] and in

variants of the classical multi-armed bandits such as linear [4], contextual [5], structured bandits

[6] etc.

Best-arm Identification in Bandits with Independent Arms. Instead of maximizing the

cumulative reward, an alternative objective in the Multi-Armed Bandit setting is to identify

the best arm (i.e., the arm with the largest mean reward) from as few samples as possible.

While reward maximization has been studied extensively, the best-arm identification problem

is seldom explored in settings outside of the classical MAB framework, i.e., the setting where

rewards corresponding to different arms are independent of each other. The best-arm identification

problem can be formulated in two different ways, namely fixed confidence [7] and fixed budget

[8]. In the fixed confidence setting, the player is provided with a confidence parameter δ and

their goal is to achieve the fastest (i.e., with the least number of samples) possible identification

of the best arm with a probability of at least 1− δ. In the fixed budget setting, the number of

samples that the player can receive is fixed, and the goal is to identify the best arm with the

highest possible confidence. In this paper, we focus on the fixed confidence setting.
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Fig. 2: Upon observing a reward r from an arm k, pseudo-rewards s`,k(r), give us an upper

bound on the conditional expectation of the reward from arm ` given that we observed reward r

from arm k. These pseudo-rewards models the correlation in rewards corresponding to different

arms.

The best arm identification problem has been explored in the classical MAB framework [9],

[10], [11], [12], [13], [14], [15] and three distinct approaches have shown promise, namely, the

racing/successive elimination, law of iterated logarithm upper confidence bound (lil’UCB) and

lower and upper confidence bound (LUCB) based approaches. These algorithms maintain upper

and lower confidence bound indices for each arm and usually stop once the lower confidence

index of one arm becomes larger than upper confidence bound of all other arms (discussed in

more detail in Section III). These three approaches differ in their approach of sampling arms.

The successive elimination approach samples arms in a round robin manner, lil’UCB samples the

arm with the largest upper confidence bound index at round t and LUCB samples two distinct

arms at each round, first it samples the arm with the largest empirical mean and then amongst

the rest it samples an arm with the largest upper confidence bound index.

These best-arm identification algorithms have found their use in a wide variety of application

settings, such as clinical trials [16] , ad-selection campaigns [17] , crowd-sourced ranking [11] and

hyperparameter optimization [18] by treating different different drugs/treatments, advertisements,

items to be ranked and hyperparameters as the arms in the multi-armed bandit problem.

Best-arm Identification when Rewards are Correlated across arms. The aforementioned

best-arm identification algorithms all operate under the assumption that the rewards from different
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arms are independent of each other; e.g., at a given round t, the reward obtained from arm k

does not provide any information about the reward that one might have received if they sampled

another arm `. However, this may not be the case in many applications of MABs. For instance,

the response of a user for different advertisements in an ad-campaign is likely to be correlated

as the ad designs may be related or starkly different with each other (see Figure 1). In practice,

the presence of such correlations may be known beforehand either through domain expertise or

through controlled studies where each user is presented with multiple arms. For example, before

starting ad campaign, partial information may be known about the expected reward we would

receive from a user by showing that ad version `, given their response to version k. A similar

argument can be made in the application domain of clinical trials, namely in identifying the

best drug for an unknown disease. There, the effect of different drugs on an individual may be

correlated if the drugs share similar or contrasting components among them. In this context, the

correlations would be expected to be known by the domain expertise of the physicians involved.

The current best-arm identification algorithms cannot leverage these correlations to reduce the

number of samples required in identifying the best arm. This papers aims to fill this gap in the

literature through a new MAB model introduced next.

A Novel Correlated MAB model. Motivated by this, we consider a multi-armed bandit framework

where rewards corresponding to different arms are correlated. We model the partial knowledge

of correlations through pseudo-rewards that represent upper bounds on the conditional mean

rewards. The pseudo-rewards provide us an upper bound on the expected reward from arm `,

given that the response from arm k was r (See Figure 2), i.e.,

E [R`|Rk = r] ≤ s`,k(r). (1)

A key advantage of this model is that pseudo-rewards are just upper bounds on the conditional

expected reward and they can be arbitrarily loose. In the case where all bounds are trivial, our

framework reduces to that of the classical Multi-armed bandit setting. This model was first

proposed by us in [19], where we studied the problem of reward maximization. Two seemingly

related models are the structured [20], [21] and contextual [5] multi-armed bandit models. The

structured bandit setup assumes that the mean reward of all arms are related to one another.

In particular, the mean reward of arm k is µk(θ), where θ is a hidden parameter common to

all K arms. It assumes that the mean reward mappings µk(θ) are known beforehand, but the

hidden parameter is unknown. While the mean rewards are related to one another in structured
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bandits, they are not necessarily correlated. A more detailed comparison with structured bandits is

presented in Section III. In our framework, we explicitly model the correlation through knowledge

of pseudo-rewards. The contextual bandit setup studies a setting where the context features of

the user (i.e., the user to whom ad is recommended) are known, and it tries to learn a mapping

between context features and expected rewards to provide personalized recommendation to the

users. Our model focuses on a setting where context features of the users are not known and

focuses instead on finding a single recommendation for the whole demographic. Due to these

reasons, the framework studied in this paper is fundamentally different from both structured and

contextual bandits.

Proposed C-LUCB Algorithm and its Sample Complexity. After establishing a correlated

bandit model, we then focus on designing best-arm identification algorithms, that are able to

make use of this correlation information to identify the best-arm in fewer samples than the

classical best-arm identification algorithms. In particular, we propose an approach that makes

use of the pseudo-reward information and extends the LUCB approach to the correlated bandit

setting. Our sample complexity analysis shows that the proposed C-LUCB approach is able to

explore certain arms without explicitly sampling them. Due to this, we see that these arms, termed

as non-competitive contribute only an O(1) term in the sample complexity as to the typical

O
(
log 1

δ

)
contribution by each arm. As a result of this, we are able to provide better sample

complexity results than LUCB in the correlated bandit setting. In particular, the LUCB algorithm

stops with probability 1 − δ after obtaining at most
∑

k∈K
2ζ
∆2
k

log

K log

(
1

∆2
k

)
δ

 samples,

where ∆k = µk∗ − µk, i.e., the difference in mean reward of optimal arm k∗ and mean reward

of arm k and ∆k∗ = mink 6=k∗ ∆k, i.e., the gap between best and second best arm and ζ > 0 is

a constant. The C-LUCB stops after at most
∑

k∈C
2ζ
∆2
k

log

2K log

(
1

∆2
k

)
δ

 + O(1) samples

with probability 1− δ. Here, C ⊆ K with 2 ≤ |C| ≤ K depending on the problem instance. As

the size of the set C can be smaller than K, we improve upon the sample complexity results of

standard approaches of best-arm identification. This theoretical advantage gets reflected in our

experiments on two real-world recommendation datasets, namely, Movielens and Goodreads. For

instance, Figure 3 illustrates the performance of our proposed algorithms in a correlated bandit

framework, where the goal is to identify the best movie genre from the set of 18 movie genres

in the Movielens dataset. As our proposed approach utilizes the correlations in the problem, they
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Fig. 3: This plot illustrates the number of samples required by different algorithms to identify the

best movie genre out of the 18 possible movie genres in the Movielens dataset with confidence

1−δ. As δ decreases, the algorithms need more samples to identify the best arm. As our proposed

C-LUCB and C-LUCB++ algorithms utilize correlation information, they identify the best arm

in fewer samples relative to Racing, lil’UCB, LUCB and LUCB++.

draw fewer samples than the Racing, lil’UCB and the LUCB based approaches.

Organization of the rest of the paper. In Section II of this paper, we present a new multi-armed

bandit framework, where correlation between arms is captured in the form of pseudo-rewards. We

also discuss how pseudo-rewards can be computed in practical settings in Section II. In Section III,

we review state-of-the-art best-arm identification algorithms such as successive elimination (or

racing), lil’UCB, and LUCB designed for the classical (independent arm) framework. We also

discuss how our proposed correlated multi-armed bandit framework compares with the structured

and linear bandit frameworks that have been studied previously. In Section IV we propose

the C-LUCB algorithm, and compare it with state-of-the-art approaches. We discuss several

variants of C-LUCB in Section VI. In Section V we analyze the sample complexity analysis of

C-LUCB and discuss its proof technique and implications. This analysis reveals that utilizing

correlations can lead to significant reduction in the number of samples required to identify the

best-arm. Finally, in Section VII we demonstrate the practical applicability our proposed model

and algorithm via extensive experiments on real-world recommendation datasets.
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r s2,1(r) r s1,2(r)

0 0.7 0 0.8

1 0.4 1 0.5

R1 = 0 R1 = 1

R2 = 0 0.2 0.4

R2 = 1 0.2 0.2

(a)

R1 = 0 R1 = 1

R2 = 0 0.2 0.3

R2 = 1 0.4 0.1

(b)

TABLE I: The top row shows the pseudo-rewards of arms 1 and 2, i.e., upper bounds on the

conditional expected rewards (which are known to the player). The bottom row depicts two

possible joint probability distribution (unknown to the player). Under distribution (a), Arm 1 is

optimal whereas Arm 2 is optimal under distribution (b).

II. THE CORRELATED MULTI-ARMED BANDIT MODEL

Consider a Multi-Armed Bandit setting with K arms {1, 2, . . . K}. At each round t, we sample

an arm kt ∈ K and receive a random reward Rkt ∈ [0, b]. Among the set of K arms, we denote

the arm with the largest mean reward as the best-arm k∗, i.e., k∗ = arg maxk∈K µk. In the

fixed-confidence setting [7], the objective is to identify the best-arm in as few samples as possible.

In particular, given δ > 0, the goal is to devise a sampling strategy that stops at some round T

(a random variable) and declares an arm kout as the optimal arm, where,

Pr(kout = k∗) ≥ 1− δ.

Put differently, we aim to find the best arm with probability at least 1 − δ while minimizing

the total number of samples drawn from the arms. We note that the number of samples can be

different from the number of rounds T as some algorithms (e.g., LUCB, Racing) sample multiple

arms in one round. Using the total number of samples drawn until round T allows us to compare

them fairly against algorithms that draw only one sample at each round t (e.g., lil’UCB).

The classical multi-armed bandit setting implicitly assumes that the rewards R1, R2, . . . , RK

are independent. That is, Pr(R` = r`|Rk = r) = Pr(R` = r`) ∀r`, r and ∀`, k, which implies

that, E [R`|Rk = r] = E [R`] ∀r, `, k. Motivated by the fact that rewards of a user corresponding

to different arms might be correlated, we consider a setup where fR`|Rk(r`|rk) 6= fR`(r`), with

fR`(r`) denoting the probability distribution function of the reward from arm `. Consequently,

due to such correlations, we have E [R`|Rk] 6= E [R`].
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Observation from Arm 1

r s2,1(r) s3,1(r)

0 0.7 2

1 0.8 1.2

2 2 1

Observation from Arm 2

r s1,2(r) s3,2(r)

0 0.5 1.5

1 1.3 2

2 2 0.8

Observation from Arm 3

r s1,3(r) s2,3(r)

0 1.5 2

1 2 1.3

2 0.7 0.75

TABLE II: If some pseudo-reward entries are unknown (due to lack of domain knowledge),

those entries can be replaced with the maximum possible reward and then used in the C-LUCB

algorithm. We do that here by entering 2 for the entries where pseudo-rewards are unknown.

In our problem setting, we consider that the player has partial knowledge about the joint

distribution of correlated arms in the form of pseudo-rewards, as defined below:

Definition 1 (Pseudo-Reward). Suppose we sample arm k and observe reward r. Then the

pseudo-reward of arm ` with respect to arm k, denoted by s`,k(r), is an upper bound on the

conditional expected reward of arm `, i.e.,

E[R`|Rk = r] ≤ s`,k(r). (2)

For convenience, we set s`,`(r) = r.

Remark 1. Note that the pseudo-rewards are upper bounds on the expected conditional reward

and not hard bounds on the conditional reward itself. This makes our problem setup practical as

upper bounds on expected conditional reward are easier to obtain, as illustrated below.

The pseudo-reward information consists of a set of K ×K functions s`,k(r) over [0, b]. This

information can be obtained in practice through either domain and expert knowledge or from

controlled surveys. For instance, in the context of medical testing, where the goal is to identify

the best drug to treat an ailment from among a set of K possible options, the effectiveness of two

drugs is correlated when the drugs share some common ingredients. Through domain knowledge

of doctors, it is possible to answer questions such as “what are the chances that drug B would

be effective given drug A was not effective?", through which we can infer the pseudo-rewards.

Computing Pseudo-Rewards from domain knowledge or historical data. The pseudo-

rewards can also be obtained from domain knowledge or through offline pilot surveys in which

users are presented with all K arms allowing us to sample R1, . . . , RK jointly. Through such

data, we can evaluate an estimate on the conditional expected rewards. For example in Table I,
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we can look at all users who obtained 0 reward for Arm 1 and calculate their average reward for

Arm 2, say µ̂2,1(0). Since we only need an upper bound on E [R2|R1 = 0], we can use any one

of the following approaches to set the pseudo-reward s2,1(0).

1) The pseudo-reward s2,1(0) can be set to µ̂2,1(0) + σ̂2,1(0), where µ̂2,1(0) is the empirical

average of conditional rewards of R2 given R1 = 0 and σ̂2,1(0) is the empirical standard

deviation. Adding the standard deviation ensures that the pseudo-reward is an upper bound

on the conditional expected reward E [R2|R1 = 0] with high probability.

2) Alternately, pseudo-rewards for any unknown conditional mean reward could be set to

b, the maximum possible reward for the arm (recall that Rk ∈ [0, b]). Table II shows an

example where unknown pseudo-rewards are set to 2, the maximum possible reward.

3) If through the training data, we obtain a soft upper bound u on E [R2|R1 = 0] that holds with

probability 1−δ, then we can translate it to the pseudo-reward s2,1(0) = u× (1−δ)+2×δ,

(assuming maximum possible reward is 2).

Remark 2 (Reduction to Classical Multi-Armed Bandits). When all pseudo-reward entries are

unknown, then all pseudo-reward entries can be filled with maximum possible reward for each

arm, that is, s`,k(r) = b ∀r, `, k. In that case, the problem framework studied in this paper

reduces to the setting of the classical Multi-Armed Bandit problem.

While the pseudo-rewards are known in our setup, the underlying joint probability distribution

of rewards is unknown. For instance, Table I(a) and Table I(b) show two joint probability

distributions of the rewards that are both possible given the pseudo-rewards at the top of Table I.

If the joint distribution is as given in Table I(a), then Arm 1 is optimal, while Arm 2 is optimal

if the joint distribution is as given in Table I(b).

III. RELATED PRIOR WORK

The design of best-arm identification algorithms in the fixed-confidence setting have three

key design components: i) their sampling strategy, i.e., which arm to pick at round t; ii) their

elimination criteria, i.e., when to declare an arm as sub-optimal and remove it from the rest

of the sampling procedure; and iii) their stopping criteria, i.e., when to stop the algorithm and

declare an arm as the best arm.

In order to accomplish the task of best-arm identification, algorithms use the empirical mean

µ̂k(t) for arm k at round t. In addition to this, upper confidence bound and lower confidence bound
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on the mean of arm k are maintained based on the number of samples of arm k, nk(t), and the input

confidence parameter δ. In particular, the upper confidence index Uk(nk, δ) = µ̂k(t) +Bk(nk, δ)

and lower confidence index Lk(nk, δ) = µ̂k(t)−Bk(nk, δ) are maintained for each arm k ∈ K.

Here Bk(nk, δ) ∝
√

log
(

log(nk)

δ

)
nk

is an anytime confidence bound [9], [22] constructed such that

Pr
(
∃ nk ≥ 1 : µk /∈ [Lk(nk, δ), Uk(nk, δ)]

)
≤ δ. (3)

Note that the anytime confidence interval bound the probability of the mean lying outside the

confidence interval uniformly for all nk ≥ 1, i.e., the probability that the mean lies outside the

confidence interval [Lk(nk, δ), Uk(nk, δ)] at any round t is upper bounded by δ. In contrast to the

Hoeffding bound, which are only valid for a fixed and deterministic nk, the anytime confidence

bound holds true uniformly for all t ≥ 1 and for random nk as well. We refer the reader to [22]

for a detailed discussion and developments in anytime confidence bounds Bk(nk, δ).

A. Existing Best-Arm identification strategies

There are three well-known approaches to the best-arm identification problem: i) Successive

Elimination (also called racing) [14], [23], [15]; ii) lil’UCB (Law of Iterated Logarithms Upper

Confidence Bound) [9]; and iii) LUCB [13], [10] (Lower and Upper Confidence Bound). Below,

we briefly introduce these algorithms, and present a summary of their arm sampling strategies

and elimination and stopping criteria in Table III 2. For more details, we refer the reader to [7]

that provides a comprehensive survey of best-arm identification in the fixed confidence setting.

Successive Elimination or Racing: The successive elimination (also called racing) strategy

maintains a set of active arms At at each round. It samples arms in a round-robin fashion from

the set of active arms and at the end of each round, it eliminates an arm k from the set of active

arms if the lower confidence index of some other arm ` 6= k, L`
(
n`,

δ
K

)
, is strictly larger than the

upper confidence index of arm k, Uk
(
nk,

δ
K

)
. It continues this until a single arm is left in the set

At and returns that arm as the optimal arm. Two other algorithms, Exponential-gap elimination

[24] and PRISM [25], build upon successive elimination to provide stronger theoretical guarantees.

However, their empirical performance is not promising as noted in [7].

2The confidence bound C(nk(t), δ), and subsequently lower and upper confidence indices Lk(nk(t), δ) and U(nk(t), δ),

depend on the number of rounds t, the number of samples of arm k till round t nk(t) and the confidence parameter δ. For brevity

purposes, at times we represent the confidence bound as C(nk, δ) or C(δ) and the LCB, UCB indices as Lk(t, δ), Lk(nk, δ) or

Lk(δ) and Uk(t, δ), Uk(nk, δ) or Uk(δ) respectively.
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Algorithm Sampling Strategy Eliminate Arm k if Stopping Criteria

Racing Round Robin in At Uk
(
δ
K

)
< max
`∈At

L`
(
δ
K

)
|At| = 1

lil’UCB Sample kt, kt = argmaxk Uk(δ) N/A nkt ≥ α
∑
k 6=kt nk

LUCB Sample m1,m2, Uk
(
δ
K

)
< max
`∈At

L`
(
δ
K

)
|At| = 1* or

m1 = argmax
k∈At

µ̂k(t), Lm1

(
δ
K

)
> Um2

(
δ
K

)
m2 = argmax

k∈At\{m1}
Uk
(
δ
K

)
LUCB++ Sample m1,m2, Lm1

(
δ

2K

)
> Um2

(
δ
2

)
m1 = argmax

k∈K
µ̂k(t) N/A

m2 = argmax
k∈K\{m1}

Uk
(
δ
2

)
C-LUCB Sample m1,m2, Ũk

(
δ

2K

)
< max
`∈At

L`
(
δ

2K

)
|At| = 1

(ours) m1 = argmax
k∈At

Ik(t),

m2 = argmax
k∈At\{m1}

min
(
Ũk,k

(
δ

2K

)
, Ik(t)

)
C-LUCB++ Sample m1,m2, Ũk

(
δ

3K

)
< max
`∈At

L`
(
δ

3K

)
|At| = 1 or

(ours) m1 = argmax
k∈At

Ik(t), Lm1

(
δ

4K

)
> Ũm2,m2

(
δ
4

)
m2 = argmax

k∈At\{m1}
min

(
Ũk,k

(
δ
2

)
, Ik(t)

)

TABLE III: All best-arm identification algorithms have three key components, i) Sampling strategy

at each round t, ii) elimination criteria for an arm and iii) the stopping criteria of the algorithm.

We compare these for Racing, lil’UCB, LUCB and LUCB++ algorithms and see the differences

in their operation. The indices used for our proposed C-LUCB and C-LUCB++ are defined in

(7) and (9).

lil’UCB [9]: The lil’UCB algorithm samples the arm with the largest upper confidence index

Uk(nk, δ) at round t and stops when an arm has been sampled more than αt
α+1

times till round

t. In practice, the value of α is taken to be 9. It then declares the most sampled arm as the

best-arm.

LUCB [13], [7]: The LUCB approach samples two arms m1(t),m2(t) at each round t. Here,

m1(t) is the arm with the largest empirical reward till round t, and m2(t) is the arm with the

largest UCB index Uk
(
nk,

δ
K

)
among the rest. The LUCB algorithm stops if the lower confidence
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bound of the first arm m1(t) is larger than the upper confidence index of all other arms. 3

Subsequently, another algorithm LUCB++ [12], [11] was designed that operates in a similar

manner to LUCB but constructs the upper confidence and lower confidence indices with different

confidence parameters for m1(t),m2(t). The details of the upper confidence and lower confidence

indices for each of these algorithms are presented in Table III. Note that our metric for comparison

is the total number of samples collectively drawn from the arms. As LUCB algorithms sample

two arms at each round, the total number of samples drawn from the LUCB algorithms is two

times the number of rounds t. By comparing the total number of samples and not the number of

rounds t, we draw a fair comparison between the performance of LUCB and lil’UCB algorithm.

All the approaches described above work well for the case where rewards are known to be

either sub-Gaussian or bounded. Furthermore, if the class of distribution is known (e.g., it is

known that rewards are Gaussian with known σ and unknown µ), then there are two more

approaches known in the literature, namely Top Two Thompson Sampling (TTTS) [26] and

Tracking [27]. In TTTS, the player computes a posterior distribution on the mean reward of

each arm and then applies Thompson sampling on the posterior to obtain two samples. It stops

when the posterior probability of an arm k being optimal exceeds a certain threshold τk(nk, δ).

In [27], authors evaluate a lower bound for the Multi-Armed bandit problem in the form of

an optimization problem. They propose a tracking based approach, that solves the optimization

problem at each round to obtain an estimated rate at which each arm should be sampled at

round t and sample arms in proportion to that rate. Both of these algorithms are computationally

intensive as they involve the computation of a posterior or solving of an optimization problem at

each round of the algorithm and require the knowledge of the class of reward distribution. Since

we only assume that the rewards are bounded and not the class of distribution, we do not focus

on extending TTTS or Tracking based approaches to the correlated bandit setting in this paper.

B. Developments in Confidence sequence Bk(nk, δ)

It is important to note that the performance of the algorithms described above depends critically

on the tightness of the confidence bound Bk(nk, δ). For instance, initially the LUCB algorithm

3Equivalently, one can eliminate an arm k from At at the end of each round if the upper confidence index of arm k is

smaller than the lower confidence index of some other arm, and stop the algorithm when the set of active arms |At| = 1.

This implementation of the LUCB algorithm has the same guarantees as the one proposed in [13], [7] while obtaining similar

empirical performance.
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Algorithm Confidence Bound B(nk, δ) Type Samples Drawn

Succ Elimination [15]

√
log

(
π2n2

k
3δ

)
2nk

Racing 577209.4

lil Succ Elimination [7] 0.85
√

log(log(0.2585nk))+0.96 log(67.59/δ)
nk

Racing 120498.5

KL-Racing [10] d(B) = 2 log
(

11.1t1.1

δ

)
* Racing 147780.4

Racing with [22] 0.85
√

log(log(0.5nk))+0.72 log(5.2/δ)
nk

Racing 82504.7

LUCB [13]

√
log
(

405t1.1

δ
log
(

405t1.1

δ

))
2nk

LUCB 219510.2

lil LUCB [25] 0.85
√

log(log(0.2585nk))+0.96 log(67.59/δ)
nk

LUCB 90523.0

KL-LUCB [10] d(B) =2 log
(

405.5t1.1

δ

)
+ log log

(
405.5t1.1

δ

)
LUCB 81154.4

LUCB with [22] 0.85
√

log(log(0.5nk))+0.72 log(5.2/δ)
nk

LUCB 62533.2

lil’UCB [9] 0.85
√

log(log(0.2585nk))+0.96 log(67.59/δ)
nk

lil’UCB 140987.0

lil-KL-LUCB [11] d(B) = 1.86 log
(
κ log2

(
2nk
δ

))
LUCB++ 92000.0

LUCB++ with [22] 0.85
√

log(log(0.5nk))+0.72 log(5.2/δ)
nk

LUCB++ 55138.8

TABLE IV: Description of the well-known best-arm identification algorithms and the confidence

bound B(nk, δ) that they use for [0,1] bounded rewards. All the three types of algorithms have

evolved with time due to the development of tighter 1− δ anytime confidence intervals B(nk, δ).

We see that the algorithms perform best with the confidence bound suggested in [22], and hence

we use that for all our implementations of Racing, LUCB, LUCB++ and our proposed algorithm

in the rest of the paper. The reported sample complexity is for the task of identifying best movie

genre from the set of 18 movie genres in the Movielens dataset. Experimental setup is described

in detail in Section VII.

was proposed with the confidence interval Bk(nk, δ) =

√
log

(
405n1.1

k
δ

log

(
405n1.1

k
δ

))
2nk

(See [13]) for

[0, 1] bounded random variables. Subsequently tighter bounds as in [7], [10] were developed,

which led to performance improvements in the LUCB algorithm. See Table IV for a comparison

different confidence bound developed over time and how they affect the empirical performance

of the best-arm identification algorithms4. For a more detailed comparison of different confidence

bounds Bk(nk, δ), we refer the reader to Table 2 of [22]. To the best of our knowledge, the

tightest 1 − δ anytime confidence interval for bounded and sub-Gaussian random variables is

4The bound proposed in [10], [11] are KL based bounds that evaluate the indices Uk(nk, δ), Lk(nk, δ) as inf{j > µ̂k :

nk(t)dkl(µ̂k, j) < d(B)} and sup{j < µ̂k : nk(t)dkl(µ̂k, j) < d(B). The distance dkl(x, y) is evaluated as x log(x/y) + (1−

x) log((1− x)/(1− y))
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proposed in [22], which constructs

Bk(nk, δ) = 0.85

√
log(log(0.5nk)) + 0.72 log(5.2/δ)

nk
. (4)

Due to this observation, which is also supported by empirical evidence in Table IV, we use

the bound suggested by [22] in all implementations of Successive Elimination, LUCB and our

proposed algorithm. However, our algorithm and analysis extend to arbitrary 1 − δ anytime

confidence interval Bk(nk, δ).

We would also like to highlight the fact that lil’UCB is known to have the best known

theoretical sample complexity (in terms of its dependency on the number of arms K). The LUCB

algorithm stops with probability 1− δ after obtaining at most
∑

k∈K
2ζ
∆2
k

log

K log

(
1

∆2
k

)
δ


samples, where ∆k = µk∗ − µk, the difference in mean reward of optimal arm k∗ and mean

reward of arm k. And ∆k∗ = mink 6=k∗ ∆k, the gap between best and second best arm. It is

known that lil’UCB algorithm has a sample complexity O

log

 log

(
1

∆2
k

)
δ

i.e., it avoids the

log(K) term in the numerator, and hence has the best known theoretical sample complexity.

However, it has been observed (both in [7] and our experiments) that its empirical performance is

inferior to that of the LUCB algorithm. Due to this reason, we focus on proposing an algorithm

C-LUCB that extends the LUCB approach to the correlated bandit setting. We have included the

performance of lil’UCB in all our experiments.

C. Algorithms outside the classical setting

Unlike the regret-minimization problem, the best-arm identification problem is relatively

unexplored outside of the classical multi-armed bandit setting. A rare exception is the structured

bandit setting, where mean rewards corresponding to different arms are related to one another

through a hidden parameter θ. The underlying value of θ is fixed and unknown, but the mean

reward mappings θ → µk(θ) are known. The linear bandit setting is a special case of structured

bandits, where mean reward mappings are of the form xᵀkθ with xk known to the player. The

best-arm identification problem has been studied in [28], [29] for linear bandits and in [21] for

the general structured bandit setting. Other special cases of structured bandits include global

bandits [30], regional bandits [31] and the generalized linear bandits [32]; to the best of our

knowledge the best arm identification problem has not been addressed in these special cases.
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The correlated bandit model considered in this paper is fundamentally different from the

structured bandit framework as detailed below.

1) The model studied here explicitly models the correlations in the rewards of different arms

at any given round t. In structured bandits, the mean rewards are related to each other, but

the reward realizations at a given round are not necessarily correlated.

2) The model studied here is non-parametric, and there is no hidden feature θ as in the case

of structured bandits.

3) It is also possible to use the structured bandit framework for the objective of identify

best global recommendation in an ad-campaign. However, there are two major challenges

i) In deciding upon the feature vector θ that we need to use, through which the mean

rewards are related to one another. ii) Secondly, in the structured bandits framework, the

reward mappings from θ to µk(θ) need to be exact. If they happen to be incorrect, then

the algorithms for structured bandit cannot be used as they rely on the correctness of

µk(θ) to construct confidence intervals on the unknown parameter θ. In contrast, the model

studied here only relies on the pseudo-rewards being upper bounds on the conditional

expectations E [R`|Rk = r]. Our proposed algorithm works even when these bounds are

not tight. The lack of hidden parameter θ and pseudo-rewards being upper bounds on

conditional expectations make the model studied in this paper more suitable for practical

scenarios where the goal is to identify the best global recommendation.

IV. PROPOSED CORRELATED-LUCB BEST-ARM IDENTIFICATION ALGORITHM

In the correlated MAB framework, the rewards observed from one arm can help estimate

the rewards from other arms. Our key idea is to use this information to reduce the number of

samples taken before stopping. We do so by maintaining the empirical pseudo-rewards of all

pairs of distinct arms at each round t.

A. Empirical Pseudo-Rewards and New UCB indices

In our correlated MAB framework, pseudo-reward of arm ` with respect to arm k provides us

an estimate on the reward of arm ` through the reward sample obtained from arm k. We now

define the notion of empirical pseudo-reward which can be used to obtain an optimistic estimate

of µ` through just reward samples of arm k.
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Definition 2 (Empirical and Expected Pseudo-Reward). After t rounds, arm k is sampled nk(t)

times. Using these nk(t) reward realizations, we can construct the empirical pseudo-reward

φ̂`,k(t) for each arm ` with respect to arm k as follows.

φ̂`,k(t) ,

∑t
τ=1 1kτ=k s`,k(rkτ )

nk(t)
, ` ∈ {1, . . . , K} \ {k}. (5)

The expected pseudo-reward of arm ` with respect to arm k is defined as

φ`,k , E [s`,k(Rk)] . (6)

For convenience, we set φ̂k,k(t) = µ̂k(t) and φk,k = µk. Note that the empirical pseudo-reward

φ̂`,k(t) is defined with respect to arm k and it is only a function of the rewards observed by

sampling arm k.

Observe that E [s`,k(Rk)] ≥ E [E [R`|Rk = r]] = µ`. Due to this, empirical pseudo-reward

φ̂`,k(t) can serve as an estimated upper bound on µ`. Using the definitions of empirical pseudo-

reward, we now define auxiliary UCB indices, namely crossUCB and pseudoUCB indices, which

are used in the selection and elimination strategy of the C-LUCB algorithm.

Definition 3 (CrossUCB Index Ũ`,k(t, δ)). At the end of round t, we have nk(t) samples of arm

k. Using these, we define the CrossUCB Index of arm ` with respect to arm k as

Ũ`,k(t, δ) , φ̂`,k(t) +Bk(nk, δ). (7)

Furthermore, we define

Ũ`(t, δ) = min
k
Ũ`,k(t, δ),

i.e., the tightest of the K upper bounds, Ũ`,k(t, δ), for arm `.

Note that the CrossUCB index for arm ` with respect to arm k, Ũ`,k(t, δ) is constructed only

through the samples obtained from arm k. Furthermore, we have Ũk,k(t, δ) = µ̂k(t) +Bk(nk, δ),

which coincides with the standard upper confidence index used in the best-arm identification

literature. We use the confidence bound suggested by [22] (see Section III) for the construction

of Bk(nk, δ) for [0, b] bounded random variables, i.e.,

Bk(nk, δ) =
1.7b

2

√√√√ log
(

log
(
b2nk

2

))
+ 0.72 log(5.2/δ)

nk
. (8)
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As pseudo-rewards are upper bounds on conditional expected reward, they can only be used to

construct alternative upper bounds on the mean reward of other arms and not alternative lower

bounds. Due to this reason, we keep the definition of lower confidence index Lk(t, δ) the same

as that in the classical multi-armed bandit setting, i.e., Lk(t, δ) = µ̂k(t)−Bk(nk, δ). In addition

to the CrossUCB and the LCB index for each arm, we now define the PseudoUCB index of arm

` with respect to arm k. The PseudoUCB indices prove useful for the design and analysis of our

proposed algorithm.

Definition 4 (PseudoUCB Index I`,k(t)). We define the PseudoUCB Index of arm ` with respect

to arm k as follows.

I`,k(t) , φ̂`,k(t) + b

√
2 log t

nk(t)
(9)

Furthermore, we define I`(t) = mink I`,k(t), the tightest of the K upper bounds for arm `.

Note that the PseudoUCB Index uses a confidence bound, b
√

2 log t
nk(t)

, which is typically used

in the UCB1 algorithm ([2]) for the objective of cumulative reward maximization. It has the

property that Pr(I`(t) < µ`) ≤ Kt−3 [See lemma 3], i.e., the probability of mean lying outside

the pseudoUCB index I`(t) at round t decays exponentially with the number of rounds t. This

property allows us to show desirable sample complexity results for our proposed algorithm in

Section V. We now present the C-LUCB algorithm, that makes use of the PseudoUCB, CrossUCB

and LCB indices in its strategy for sampling arms, eliminating arms and stopping the algorithm.

B. C-LUCB Algorithm

The C-LUCB algorithm maintains a set of active arms At, which is initialized to the set of

all arms K = {1, . . . , K}. At each round t, it samples arms, eliminates arms and then decides

whether to stop as described below.

1) Sampling Strategy: At each round t, the C-LUCB algorithm samples two arms m1(t) and

m2(t), where

m1(t) = arg max
k∈At

Ik(t), m2(t) = arg max
k∈At\{m1(t)}

min

(
Ũk,k

(
t,

δ

2K

)
, Ik(t)

)
.

2) Elimination Criteria: The C-LUCB algorithm removes an arm k from the set At, if the

crossUCB index of arm k is smaller than the LCB index of some other arm in At, i.e., if

Ũk

(
t,

δ

2K

)
< max

`∈At
L`

(
t,

δ

2K

)
.
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Here, Ũ`
(
t, δ

2K

)
= mink Ũ`,k

(
t, δ

2K

)
.

3) Stopping Criteria: If |At| = 1, stop the algorithm and declare the arm in At as the optimal

arm with 1− δ confidence.

Both LUCB and C-LUCB sample the top two arms at round t in m1(t) and m2(t) so as to

resolve the ambiguity among them as fast as possible. However, C-LUCB uses the additional

pseudo-reward information to modify its choice of m1(t) and m2(t). In particular, the use of Ik(t)

in definition of m2(t) avoids the sampling of an arm that appears sub-optimal from samples of

other arms. Similarly, using the CrossUCB index Ũk (t, δ/2K) instead of Ũk,k(t, δ/2K), allows

the C-LUCB to eliminate some arms earlier than the LUCB algorithm. A comparison of the

operation of C-LUCB with LUCB and Racing based algorithms is presented in Table III. We show

that the proposed C-LUCB algorithm is 1− δ correct and analyze its sample complexity in the

next section. As the key difference between C-LUCB and LUCB is in its sampling strategy, we

explore some other variants of C-LUCB in Section VI, where we study the effect of performance

on altering the definitions of m1(t) and m2(t).

V. SAMPLE COMPLEXITY RESULTS

In this section, we analyze sample complexity of the proposed C-LUCB algorithm, that is,

the number of samples required to identify the best arm with probability 1− δ. We show that

some arms, referred to as non-competitive arms, are explored implicitly through the samples

of the optimal arm k∗ and contribute only an O(1) term in the sample complexity, while other

arms called competitive arms have an O (log(1/δ)) contribution in the sample complexity of the

C-LUCB algorithm. The correlation information enables us to identify the non-competitive arms

using samples from other arms and eliminate them early. For the sample complexity analysis,

we assume that the rewards are bounded between [0, 1]∀k ∈ K. Note that the algorithms do not

require this condition and the analysis can also be generalized to any bounded rewards.

A. Competitive and Non-competitive arms

We now define the notion of competitive and non-competitive arms, which are important to

interpret our sample complexity results for the C-LUCB algorithm. Let k∗ denote the arm with

the largest mean and k(2) denote the arm with the second largest mean.

Definition 5 (Non-Competitive and Competitive arms). An arm ` is said to be non-competitive if

the expected reward of the second best arm k(2) is strictly larger than the expected pseudo-reward
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of arm ` with respect to the optimal arm k∗, i.e, ∆̃` , (µk(2) − φ`,k∗) > 0. Similarly, an arm ` is

said to be competitive if ∆̃` = (µk(2) − φ`,k∗) ≤ 0. We refer to ∆̃` as the pseudo-gap of arm ` in

the rest of the paper. We denote the set of the competitive arms as C and the total number of

competitive arms as C in this paper.

The best arm k∗ and second best arm k(2) have pseudo-gaps ∆̃k∗ = (µk(2) − φk∗,k∗) < 0 and

∆̃k(2) = (µk(2) − φk(2),k∗) ≤ 0 respectively, and hence are counted in the set of competitive arms.

As φ`,k∗ ≥ µ`, the pseudo-gap ∆̃` ≤ ∆`. Due to this, we have 2 ≤ C ≤ K.

The central idea behind our C-LUCB approach is that after sampling the optimal arm k∗

sufficiently large number of times, the non-competitive (and thus sub-optimal) arms will not be

selected as m1(t) or m2(t) by the C-LUCB algorithm, and thus will not be explored explicitly.

Furthermore, the non-competitive arms can be eliminated from the information obtained through

arm k∗. As a result, the non-competitive arms contribute only an O(1) term in the sample

complexity, i.e., the contribution is independent of the confidence parameter δ. However, the

competitive arms cannot be discerned as sub-optimal by just using the rewards observed from

the optimal arm, and have to be explored O
(
log
(

1
δ

))
times each. Thus, we are able to reduce a

K-armed bandit to a C-armed bandit problem, where C is the number of competitive arms. 5

B. Analysis of C-LUCB

We start by first proving the (1− δ)-correctness of C-LUCB algorithm and then analyzing its

sample complexity in terms of the number of samples obtained until the stopping criterion is

satisfied.

Theorem 1 ((1− δ) correctness of C-LUCB). Upon stopping, the C-LUCB algorithm declares

arm k∗ as the best arm with probability 1− δ.

Proof Sketch. To prove theorem 1, we define three events E1, E2 and E3 below. Let E1 be the

event that empirical mean of all arm lie within their confidence intervals uniformly for all t ≥ 1

E1 =

{
∀t ≥ 1,∀k ∈ K, µ̂k(t)−Bk

(
nk(t),

δ

2K

)
≤ µk ≤ µ̂k +Bk

(
nk(t),

δ

2K

)}
(10)

5Observe that k∗ and subsequently C are both unknown to the algorithm. Before the start of the algorithm, it is not known

which arm is optimal/competitive/non-competitive.
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Define E2 to be the event that empirical pseudo-reward of optimal arm with respect to all other

arms lie within their crossUCB indices uniformly for all t ≥ 1, i.e.,

E2 =

{
∀t ≥ 1,∀` ∈ K, φk∗,` ≤ φ̂k∗,`(t) +B`

(
n`(t),

δ

2K

)}
(11)

Similarly define E3 to be the event that the empirical pseudo-reward of the sub-optimal arms

with respect to the optimal arm lies within their crossUCB indices uniformly for all t ≥ 1, i.e.,

E3 =

{
∀t ≥ 1, ∀` ∈ K, φ`,k∗ ≤ φ̂`,k∗(t) +Bnk∗

(
nk∗(t),

δ

2K

)}
(12)

Furthermore, we define E to be the intersection of the three events, i.e.,

E = E1 ∩ E2 ∩ E3. (13)

Due to the nature of anytime confidence intervals (See (3)) and union bound over the set of

arms, we have Pr(Ec1) ≤ δ
2
, Pr(Ec2) ≤ δ

4
and Pr(Ec3) ≤ δ

4
giving us Pr(Ec) ≤ δ. Furthermore, we

show that, when event E occurs, the C-LUCB algorithm always declares k∗ as the best arm. This

gives us the desired result in Theorem 1. A detailed proof is given in the Appendix F.

Theorem 2. Given event E (defined in (13)), the expected number of samples drawn by C-LUCB

until stopping, is bounded as

E
[
NC-LUCB | E

]
≤
∑
k∈C

2ζ

∆2
k

log

2K log
(

1
∆2
k

)
δ

+
3K + 2Kt0

1− δ +
2

1− δ

(
(K + 1)3

t0
+

2

t20

)
,

(14)

where t0 = inf

{
τ ≥ 2 : ∆k∗ ≥ 4

√
2K log τ

τ
∀k /∈ C

}
and ζ is a universal constant that depends

on the type of confidence bound used to construct Bnk(nk, δ) (Section 3b) – the tighter the bound,

the smaller the ζ. The gap ∆k is defined as ∆k , µk∗ − µk for k 6= k∗, i.e., the difference in

mean reward of optimal arm k∗ and mean reward of arm k and ∆k∗ , mink 6=k∗ ∆k, i.e., the gap

between best and second best arm.

We present a brief proof outline below, while the detailed proof is available in the Appendix E.

Proof Sketch. In order to bound the total number of samples drawn by C-LUCB, we bound

the total number of rounds T taken by C-LUCB before stopping. As C-LUCB algorithm pulls

two arms m1(t) and m2(t) in each round t, the number of samples NC-LUCB = 2T . We obtain

an upper bound on the total number of rounds T , considering the following four counts of the

number of rounds and obtain an upper bound for each of them under the event E :
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1) T (R): Let T (R) denote the number of rounds in which Ik∗(t) < µk∗ , i.e., the count of

events in which the pseudoUCB index of arm k∗ is smaller than the mean of arm k∗ at

round t.

2) T (C): Define T (C) to be the number of rounds in which m1(t),m2(t) ∈ C and event

Ik∗(t) > µk∗ does not occur.

3) T (NC): Define T (NC) to be the number of rounds in which m1(t) /∈ C,m2(t) 6= k∗ or

m2(t) /∈ C,m1(t) 6= k∗.

4) T (∗): Define T (∗) to be the number of rounds in which m1(t) = k∗,m2(t) /∈ C or m2(t) =

k∗,m1(t) /∈ C .

We can now see that T ≤ T (R) +T (C) +T (NC) +T (∗). We show that Pr(Ik∗(t) < µk∗|E) ≤ Kt−3

1−δ ,

giving us E
[
T (R)|E

]
≤ 1

1−δ
∑∞

t=1 Kt
−3 ≤ 3K

2(1−δ) . Next we show that

Pr

T (C) + T (∗) ≥∑k∈C
ζ

∆2
k

log

2K log

(
1

∆2
k

)
δ

∣∣∣E
 = 0. Due to this,

T (C) + T (∗) ≤
∑
k∈C

ζ

∆2
k

log

2K log
(

1
∆2
k

)
δ

 w.p. 1− δ.

We then evaluate an upper bound on E
[
T (NC)|E

]
and show that it is upper bounded by a O(1)

constant, i.e.,

E
[
T (NC)|E

]
≤ Kt0

1− δ +
1

1− δ

(
(K + 1)3

t0
+

2

t20

)
.

Putting these results together, we obtain the result of Theorem 2.

Furthermore, as E
[
T (NC)|E

]
,E
[
T (R)|E

]
is upper bounded by an O(1) constant as δ → 0, by

Borel-Cantelli lemma, ∃d1 : Pr(T (NC) > d1|E) = 0 almost surely. Similarly ∃d2 : Pr(T (R) >

d2|E) = 0 a.s. As a consequence of this, we have the following result bounding the total number

of samples drawn from the C-LUCB algorithm with probability 1− δ.

Corollary 1. With probability 1 − δ, the number of samples obtained by C-LUCB is upper

bounded as

NC-LUCB ≤
∑
k∈C

2ζ

∆2
k

log

2K log
(

1
∆2
k

)
δ

+ d w.p. 1− δ. (15)

Note that the O
(
log
(

1
δ

))
term is only summed for the set of competitive arms C, in contrast to

the LUCB algorithm where the sample complexity term involves summation of a O
(
log
(

1
δ

))
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for all arms k ∈ K. In this sense, our proposed algorithm reduces a K-armed bandit problem to

a C-armed bandit problem.

The key intuition behind our sample complexity result is that the sampling of m1(t) =

arg maxk∈At Ik(t) ensures that the optimal arm is sampled at least t/K times till round t with

high-probability. This in turn ensures that the non-competitive arms are not selected as m1(t) or

m2(t), due to which we see that their expected number of samples are bounded above by a O(1)

constant.

C. Comparison with the LUCB algorithm

The LUCB algorithm is known to stop after obtaining at most

∑
k∈K

2ζ
∆2
k

log

K log

(
1

∆2
k

)
δ


samples with probability at least 1− δ. More formally,

NLUCB ≤

∑
k∈K

2ζ

∆2
k

log

K log
(

1
∆2
k

)
δ

 , w.p. 1− δ.

We compare this result with the one that we prove for C-LUCB algorithm in Theorem 2.

Reduction to a C-Armed Bandit problem: As highlighted earlier, in the C-LUCB approach,

the O
(
log
(

1
δ

))
term only comes from the set of competitive arms, as opposed to the LUCB

algorithm which has O(
(
log
(

1
δ

))
contribution from all its arms. In this sense, C-LUCB algorithm

reduces a K-armed bandit problem to a C-armed bandit problem. Depending on the problem

instance, the value of C can vary between 2 and K.

Slightly larger number of samples from competitive arms: We see that the contribution

coming from a competitive arm in C-LUCB algorithm is 2ζ
∆2
k

log

2K log

(
1

∆2
k

)
δ

. This is slightly

larger than the contribution coming from a sub-optimal arm in LUCB algorithm, where each

arm contributes 2ζ
∆2
k

log

K log

(
1

∆2
k

)
δ

 in the sample complexity. This is due to the fact that we

construct slightly wider confidence intervals, Bk

(
nk,

δ
2K

)
instead of Bk

(
nk,

δ
K

)
, in C-LUCB to

take advantage of the correlations present in the problem. We see in Section VII that this small

increase in the width of confidence intervals does not have a significant impact on the empirical

performance of the algorithm.

Theorem 2’s result is in conditional expectation: While the sample complexity result of the

LUCB algorithm bounds the total number of samples taken with probability 1− δ, our sample

complexity result bounds the expected samples taken by C-LUCB algorithm under the event E
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Algorithm First arm m1(t) Second arm m2(t) Samples drawn

C-LUCB argmax
k∈At

Ik(t) argmax
k∈At\{m1}

min
(
Ũk,k

(
δ

2K

)
, Ik(t)

)
39277.8

maxmin-LUCB argmax
k∈At

min` φ̂k,`(t) argmax
k∈At\{m1}

Ũk
(
δ

2K

)
36314.2

2-LUCB argmax
k∈At

Ik(t) argmax
k∈At\{m1}

Ũk
(
δ

2K

)
39385.8

TABLE V: We study two intuitive variants of C-LUCB which differ in their sampling strategy

of m1(t) and m2(t). Both of them have same elimination and stopping criteria as the C-LUCB

algorithm. We report the number of samples needed to identify the best genre from the set of 18

movie genres in the Movielens dataset. While all of these are smaller than the samples drawn by

LUCB (which is 61175.4 in this case), the difference between the variants of C-LUCB is minimal.

Experimental details are described in detail in Section VII, we set the value of p = 0.2 (i.e., the

fraction of pseudo-reward entries that are replaced by 5) in this experiment. Such similarity in

empirical performance has also been observed in our other experiments and we found no clear

winner among the three when compared on their empirical performance.

(Theorem 2). This arises as the analysis of our algorithm requires a transient component, because

it tries to avoid sampling non-competitive arm at each round with high probability. We have a

result in Corollary 1 that evaluates an upper bound which holds with probability 1− δ, but we

are unable to quantify the constant d in Corollary 1 and can only characterize d in expectation

as done in Theorem 2. Our experimental results demonstrate that the variance in the number of

samples drawn by C-LUCB is not much, and is in fact similar to that of the LUCB algorithm.

The log(K) term in numerator: Just like the sample complexity result of the LUCB algorithm

[7], our sample complexity result also has a log(K) in its sample complexity result. This is

avoidable in the classical MAB framework if one uses the lil’UCB algorithm, which is known to

have the optimal theoretical sample complexity in the classical bandit setting as it avoids the

log(K) term in its sample complexity expression. However the use of lil’UCB algorithm leads to

worse empirical performance as seen in our experiments and prior work [7]. Due to this reason,

we focus only on the extension of LUCB to the correlated bandit setting.

VI. VARIANTS OF C-LUCB

In our proposed C-LUCB algorithm, at each round we sample two arms m1(t),m2(t), where

m1(t) = arg maxk∈At Ik(t) and m2(t) = arg maxk∈At\{m1}min(Ũk,k(δ/2K), Ik(t)). A sampling
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such as this allowed us to show 1 − δ correctness of the algorithm (Theorem 1) and analyse

its sample complexity (Theorem 2). In this section, we explore two other algorithms, that we

call maxmin-LUCB and 2-LUCB, that sample different m1(t) and m2(t) at round t, but have

the same elimination and stopping criteria as that of C-LUCB. In Table V, we contrast their

sampling strategy with respect to C-LUCB. While we are able to show that both maxmin-LUCB

and 2-LUCB algorithm will stop with the best-arm with probability at least 1− δ, we are unable

to provide a sample complexity result for them.

We also evaluated the empirical performance of maxmin-LUCB and 2-LUCB on a real-world

recommendation dataset, and found their empirical performance to be similar to C-LUCB. We

chose to use C-LUCB as our proposed algorithm as it is possible to provide theoretical guarantees

as in Theorem 1 and Theorem 2. Moreover, we find its empirical performance to be superior than

classical bandit algorithms in correlated bandit settings, as we illustrate through our experiments

in the next section.

A. C-LUCB++: Heuristic extension of LUCB++

The LUCB++ algorithm as illustrated in Section III, is able to improve upon LUCB, by

modifying its stopping criteria and in its sampling of m1(t) and m2(t). We propose an extension,

C-LUCB++, that extends the LUCB++ algorithm to the correlated bandit setting. The comparison

of C-LUCB++ and LUCB++ in its sampling, elimination and stopping criteria is presented in

Table III. While we are able to show that the C-LUCB++ stops with the best arm with probability

at least 1− δ in Appendix G, analysing its sample complexity remains an open problem. We

compare the performance of C-LUCB++, with C-LUCB, LUCB, Racing and lil’UCB algorithms

extensively through our experiments on Movielens and Goodreads datasets in the next section.

VII. EXPERIMENTS

We now evaluate the performance of our proposed C-LUCB and C-LUCB++ algorithms in

a real-world setting. By comparing the performance against classical best-arm identification

algorithms on the MOVIELENS and GOODREADS datasets, we show that our proposed algorithms

are able to exploit correlation to identify the best-arm in fewer samples. All results reported

in our paper are presented after conducting 10 independent trials and computing their average.

Additionally, in all our plots we show the error bars of width 2σ, where σ is the standard

deviation in the number of samples drawn by an algorithm across the 10 independent trials.
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Fig. 4: Number of samples drawn by Racing, lil’UCB, LUCB, LUCB++, C-LUCB and C-LUCB++

to identify the best movie genre out of 18 possible genres in the Movielens dataset. Here, p

represents the fraction of pseudo-reward entries that are replaced by the maximum possible

reward (i.e., 5). When p is small, there is more correlation information available that our proposed

C-LUCB and C-LUCB++ algorithms exploit to reduce the number of samples needed to identify

the best movie genre. When p = 1, there is no correlation information available, in which case

our proposed C-LUCB and C-LUCB++ algorithms have a performance similar to LUCB and

LUCB++ respectively.

A. Experiments on the MOVIELENS dataset

The MOVIELENS dataset [33] contains a total of 1M ratings for a total of 3883 Movies rated

by 6040 Users. Each movie is rated on a scale of 1-5 by the users. Moreover, each movie is

associated with one (and in some cases, multiple) genres. For our experiments, of the possibly

several genres associated with each movie, one is picked uniformly at random. To perform our

experiments, we split the data into two parts, with the first half containing ratings of the users

who provided the most number of ratings. This half is used to learn the pseudo-reward entries,

the other half is the test set which is used to evaluate the performance of the proposed algorithms.

Doing such a split ensures that the rating distribution is different in the training and test data.

Best Genre identification. In this experiment, our goal is to identify the most preferred genre
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among the 18 different genre in the test population in fewest possible samples. The pseudo-reward

entry s`,k(r) is evaluated by taking the empirical average of the ratings of genre ` that are rated

by the users who rated genre k as r. As in practice, all such pseudo-reward entries might

not be available, we randomly replace p-fraction of the pseudo-reward entries by maximum

possible reward, i.e., 5. We then run our best-arm identification algorithms on the test data

to identify the best-arm with 99% confidence. Figure 4 shows the average samples taken by

C-LUCB and C-LUCB++ algorithm relative to the classical best-arm identification algorithms

for different value of p (the fraction of pseudo-reward entries that are removed). We see that

C-LUCB and C-LUCB++ algorithms significantly outperform all Racing, lil’UCB, LUCB and

LUCB++ algorithms for p = 0.1, 0.25, 0.35 as they are able to exploit the correlations present in

the problem to identify the best arm in a faster manner.

In the scenario where all pseudo-reward entries are unknown, i.e., p = 1, we see that the

performance of C-LUCB is only slightly worse than that of LUCB algorithm. This is due to

the construction of slightly wide confidence interval Bk(nk, δ/2K) for the C-LUCB algorithm

relative to LUCB algorithm that uses Bk(nk, δ/K). We also see that in this scenario, LUCB++

and C-LUCB++ algorithm (which is an extension of LUCB++) outperform C-LUCB, which is

due to the known superiority of LUCB++ over LUCB [12], [11].

Variation with δ. We then study the performance of the best-arm identification algorithms for

different value of δ. In Figure 3, we plot the number of samples required by C-LUCB and

C-LUCB++ to identify the best arm with 90%, 94%, 98% and 99% confidence, with p = 0.2

(i.e., 20% of pseudo-reward entries are replaced by 5). As C-LUCB and C-LUCB++ are able to

make use of the available correlation information, we see our proposed algorithms require fewer

samples than the Racing, lil’UCB, LUCB and LUCB++ algorithms in each of the four settings.

B. Experiments on the GOODREADS dataset

The GOODREADS dataset [34] contains the ratings for 1,561,465 books by a total of 808,749

users. Each rating is on a scale of 1-5. For our experiments, we only consider the poetry section

and focus on the goal of identify the most liked poem for the population. The poetry dataset has

36,182 different poems rated by 267,821 different users. We do the pre-processing of goodreads

dataset in the same manner as that of the MovieLens dataset, by splitting the dataset into two

halves, train and test. The train dataset contains the ratings of the users with most number of

recommendations.
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Fig. 5: Number of samples needed by Racing, lil’UCB, LUCB, LUCB++, C-LUCB and C-

LUCB++ to identify the best poem out of the set of 25 poem books in the Goodreads dataset.

Here p represents the fraction of pseudo-rewards that are replaced by maximum possible reward

and q = 0.1 is added to each pseudo-reward entry to account for the fact that pseudo-reward

entries may be noisy. Our proposed C-LUCB and C-LUCB++ utilize correlation information and

require significantly less samples than the classical best-arm identification algorithms.

Best book identification. We consider the 25 most rated poetry books in the dataset and aim

to identify the best book in fewest possible samples with 99% confidence. After obtaining the

pseudo-reward entries from the training data, we replace p fraction of the entries with the highest

possible reward (i.e., 5) as some pseudo-rewards may be unknown in practice. To account for the

fact that these pseudo-reward entries may be noisy in practice, we add a safety buffer of 0.1 to

each of the pseudo-reward entry s`,k(r); i.e., we set the pseudo-reward to be empirical conditional

mean (obtained from training data) plus the safety buffer q = 0.1. We perform experiment on the

test data and compare the number of samples obtained for different algorithms in Figure 5 for

two different values of p. We see that in both the cases, our C-LUCB and C-LUCB++ algorithms

outperform other algorithms as they are able to exploit the correlations in the rewards.
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VIII. CONCLUDING REMARKS

In this work, we studied a new multi-armed bandit problem, where rewards corresponding to

different arms are correlated to each other and this correlation is known and modeled through

the knowledge of pseudo-rewards. These pseudo-rewards are loose upper bounds on conditional

expected rewards and can be evaluated in practical scenarios through controlled surveys or from

domain expertise. We then extended an LUCB based approach to perform best-arm identification

in the correlated bandit setting. Our approach makes use of the pseudo-rewards to reduce the

number of samples taken before stopping. In particular, our approach avoids the sampling of non-

competitive arms leading to a stark reduction in sample complexity. The theoretical superiority of

our proposed approach is reflected in practical scenarios. Our experimental results on Movielens

and Goodreads recommendation dataset show that the presence of correlation, when exploited by

our C-LUCB approach, can lead to significant reduction in the number of samples required to

identify the best-arm with probability 1− δ.
This work opens up several interesting future directions, including but not limited to the

following:

PAC-C-LUCB: In this work, we explored the problem of identifying the best-arm with probability

1− δ. A closely related problem is to find a PAC (probably approximately correct) algorithm,

that identifies an arm which is within ε from µk∗ with probability at least 1 − δ. We believe

such an algorithm can be constructed by modifying the elimination and stopping criteria of

C-LUCB algorithm. More specifically, if one compares Uk(nk, δ) + ε v/s maxk∈At Lk(nk, δ) in

the C-LUCB’s elimination criteria, it may be possible to design and analyse a PAC algorithm in

the correlated multi-armed bandit setting.

Using Pseudo-Lower bounds: We assume in our work that only upper bounds on conditional

expected rewards, in the form of pseudo-upper-bounds, are known to the player. In practical

settings, it may also be possible to obtain pseudo-lower-bounds, that may allow us to know

information about lower bound on conditional expected reward. In presence of such knowledge,

we believe C-LUCB algorithm will need a modification in its definition of lower confidence

bound Lk(nk, δ). By defining a crossLCB index L`,k(nk, δ), equivalent to crossUCB index for

upper bound, we can re-define Lk = maxL`,k. This new definition of the lower confidence bound

index can help us to incorporate cases where pseudo-lower bounds are also known.

Top m arms identification: Throughout this work, our focus was to identify just the optimal
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arm from the set of K arms. Another similar problem is to come up with an approach to

find the best m arms from the set of K arms. It is an interesting direction to explore in the

correlated-multi armed bandit setting. We believe such a problem would be even more interesting

if the pseudo-lower bounds are known. An open problem is to extend a C-LUCB like approach

to identify the best m arms from the set of K arms.

Lower bound and optimal solution: While our proposed approach shows promising empirical

performance and has some theoretical guarantees, it may not be the optimal solution for the

correlated bandit problem studied in this paper. Studying a lower bound and correspondingly an

optimal solution to this problem remains an open problem.
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APPENDIX

A. Standard Results from Previous Works

Fact 1 (Hoeffding’s inequality). Let Z1, Z2 . . . Zn be i.i.d random variables bounded between

[a, b] : a ≤ Zi ≤ b, then for any δ > 0, we have

Pr

(∣∣∣∣∑n
i=1 Zi
n

− E [Zi]

∣∣∣∣ ≥ δ

)
≤ exp

( −2nδ2

(b− a)2

)
.

Lemma 1 (Standard result used in bandit literature). If µ̂k,nk(t) denotes the empirical mean of

arm k by sampling arm k nk(t) times through any algorithm and µk denotes the mean reward

of arm k, then we have

Pr
(
µ̂k,nk(t) − µk ≥ ε, τ2 ≥ nk(t) ≥ τ1

)
≤

τ2∑
s=τ1

exp
(
−2sε2

)
.

Proof. Let Z1, Z2, ...Zt be the reward samples of arm k drawn separately. If the algorithm chooses

to sample arm k for mth time, then it observes reward Zm. Then the probability of observing

the event µ̂k,nk(t) − µk ≥ ε, τ2 ≥ nk(t) ≥ τ1 can be upper bounded as follows,

Pr
(
µ̂k,nk(t) − µk ≥ ε, τ2 ≥ nk(t) ≥ τ1

)
= Pr

((∑nk(t)
i=1 Zi
nk(t)

− µk ≥ ε

)
, τ2 ≥ nk(t) ≥ τ1

)
(16)

≤ Pr

((
τ2⋃

m=τ1

∑m
i=1 Zi
m

− µk ≥ ε

)
, τ2 ≥ nk(t) ≥ τ1

)
(17)

≤ Pr

(
τ2⋃

m=τ1

∑m
i=1 Zi
m

− µk ≥ ε

)
(18)

≤
τ2∑
s=τ1

exp
(
−2sε2

)
. (19)

Lemma 2 (From Proof of Theorem 1 in [2]). The probability that the mean reward of arm k, i.e.,

µk, is greater than the pseudoUCB index of arm k with respect to arm k, i.e., Ik,k = µ̂k +
√

2 log t
nk(t)

is upper bounded by t−3.

Pr(µk > Ik,k(t)) ≤ t−3.
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Observe that this bound does not depend on the number nk(t) of times arm k is sampled and

only depends on t.

Proof. This proof follows directly from [2]. We present the proof here for completeness as we

use this frequently in the paper.

Pr(µk > Ik,k(t)) = Pr

(
µk > µ̂k,nk(t) +

√
2 log t

nk(t)

)
(20)

≤
t∑

m=1

Pr

(
µk > µ̂k,m +

√
2 log t

m

)
(21)

=
t∑

m=1

Pr

(
µ̂k,m − µk < −

√
2 log t

m

)
(22)

≤
t∑

m=1

exp

(
−2m

2 log t

m

)
(23)

=
t∑

m=1

t−4 (24)

= t−3. (25)

where (21) follows from the union bound and is a standard trick (Lemma 1) to deal with random

variable nk(t). We use this trick repeatedly in the proofs. We have (23) from the Hoeffding’s

inequality. Note that if the empirical mean µk is replaced by the empirical pseudo reward of

arm k with respect to arm `, i.e., φk,` and Ik,k(t) by the expected pseudo reward of arm k with

respect to arm `, i.e., Ik,`(t) = φ̂k,` +
√

2 log t
n`(t)

. Then we get that Pr(φk,` > Ik,`(t)) ≤ t−3 using

the same steps as presented above.

B. Intermediate lemmas for proving bounds on samples obtained through non-competitive arms

Lemma 3. Let Ik(t) denote the pseudoUCB index of arm k at round t, and µk denote the mean

reward of that arm. Then, we have

Pr(µk > Ik(t)) ≤ Kt−3.

Similar to Lemma 2, this bound does not depend on the number of times arm k is sampled till

round t (i.e., nk(t)) and only depends on the round t and the total number of arms K. Recall that

I`(t) = mink I`,k(t), where I`,k(t) is PseudoUCB index of arm ` with respect to arm k defined

in (9).
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Proof. This proof follows in the same way as that of Lemma 2.

Pr(µk > Ik(t)) = Pr

(
µk > min

`
φ̂k,` +

√
2 log t

n`(t)

)
(26)

≤
∑
`∈K

Pr

(
µk > φ̂k,` +

√
2 log t

n`(t)

)
(27)

≤
∑
`∈K

Pr

(
φk,` > φ̂k,` +

√
2 log t

n`(t)

)
(28)

≤
∑
`∈K

t−3 (29)

= Kt−3. (30)

We have (26) from the definition of Ik(t). Inequality (28) follows from the fact that φk,` ≥ µk.

We get (29) follows from the hoeffding’s inequality combined with the union bound trick

(Lemma 2).

Lemma 4. If k 6= k∗ is a non-competitive arm i.e., k /∈ C and has a pseudo-gap ∆̃k,k∗ > 0, then,

Pr((m1(t) = k ∪m2(t) = k), nk∗(t) ≥ t/2K,W , E) ≤ 2(K + 1)t−3. ∀t > t0,

where t0 = inf

{
τ ≥ 2 : ∆min ≥ 4

√
2K log τ

τ

}
and W denotes the event that m1(t),m2(t) 6= k∗.
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Proof. We now bound this probability as,

Pr

(
(m1(t) = k ∪m2(t) = k), nk∗(t) ≥

t

2K
, E ,W

)
≤ Pr

(
m1(t) = k, nk∗(t) ≥

t

2K
,W , E

)
+ Pr

(
m2(t) = k, nk∗(t) ≥

t

2K
,W , E

)
(31)

≤ Pr

(
k = arg max

k∈At
I`(t), nk∗ ≥

t

2K
,W , E

)
+ Pr

(
m2(t) = k, nk∗ ≥

t

2K
,W , E

)
(32)

≤ Pr

(
φ̂k,k∗ +

√
2 log t

nk∗(t)
≥ Ik∗(t), nk∗ ≥

t

2K

)
+ Pr

(
m2(t) = k, nk∗ ≥

t

2K
,W , E

)
(33)

≤ Pr

(
φ̂k,k∗ +

√
2 log t

nk∗(t)
≥ Ik∗(t), µk∗ < Ik∗nk∗ ≥

t

2K

)
+ Pr (µk∗ > Ik∗(t)) +

Pr

(
m2(t) = k, nk∗ ≥

t

2K
,W , E

)
(34)

≤ Pr

(
φ̂k,k∗ +

√
2 log t

nk∗(t)
≥ µk∗ , nk∗ ≥

t

2K

)
+Kt−3 + Pr

(
m2(t) = k, nk∗ ≥

t

2K
,W , E

)
(35)

= Pr

(
φ̂k,k∗ − φk,k∗ ≥ µk∗ −

√
2 log t

nk∗(t)
, nk∗ ≥

t

2K

)
+Kt−3+

Pr

(
m2(t) = k, nk∗ ≥

t

2K
,W , E

)
(36)

≤ t exp

−2
t

2K

(
µk∗ − φk,k∗ −

√
4K log t

t

)2
+Kt−3 + Pr (m2(t) = k, E) (37)

≤ t−3 exp

(
∆2

min − 2∆min

√
4K log t

t

)
+Kt−3 + Pr

(
m2(t) = k, nk∗ ≥

t

2K
,W , E

)
(38)

≤ t−3 +Kt−3 + Pr (m2(t) = k,W , E) ∀t > t0 (39)

Here (35) follows from Lemma 3. Inequality (37) follows as a result of hoeffding bound and

the union bound trick, as nk∗ can take any value between t
2K

and t (Lemma 1). We get (38) as

φk,k∗ < µk(2) as the arm k is non-competitive.

We now bound Pr((m2(t) = k, E) separately. Under E , the crossUCB index Ũk∗,k∗
(
nk∗ ,

δ
2K

)
is larger than µk∗ . Using similar steps as done for the first term we now evaluate the upper bound
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on the probability that arm k to be selected as m2(t) at round t,

Pr

(
m2(t) = k, nk∗ ≥

t

2K
,W , E

)
≤ (40)

≤ Pr

(
φ̂k,k∗ +

√
2 log t

nk∗(t)
≥ µk∗ , Ik∗(t) > µk∗ , nk∗ ≥

t

2K

)
+ Pr (µk∗ > Ik∗(t)) (41)

≤ t−3 +Kt−3 (42)

(43)

Combining this with (39), we get the result of Lemma 4.

Lemma 5. If ∆min ≥ 4
√

2K log t0
t0

for some constant t0 > 0, then,

Pr(m1(t) = k, nk(t) ≥ s, E) ≤ 2(K + 1)t−3 for s >
t

2K
,∀t > t0.

Proof. By noting that m1(t) = k corresponds to arm k having the highest pseudoUCB index

among the set of active arms at round t (denoted by At), we have,

Pr(m1(t) = k, nk(t) ≥ s, E) = Pr(Ik(t) = arg max
k′∈At

Ik′(t), nk(t) ≥ s, E) (44)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s) . (45)

Here (45) follows from the fact that under E , k∗ is always in At (Appendix F).
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Pr(Ik(t) > Ik∗(t), nk(t) ≥ s) =

Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) +

Pr (Ik(t) > Ik∗(t), nk(t) ≥ s|µk∗ > Ik∗(t))× Pr (µk∗ > Ik∗(t)) (46)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) + Pr (µk∗ > Ik∗(t)) (47)

≤ Pr (Ik,k(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) +Kt−3 (48)

= Pr (Ik,k(t) > µk∗ , nk(t) ≥ s) +Kt−3 (49)

= Pr

(
µ̂k(t) +

√
2 log t

nk(t)
> µk∗ , nk(t) ≥ s

)
+Kt−3 (50)

= Pr

(
µ̂k(t)− µk > µk∗ − µk −

√
2 log t

nk(t)
, nk(t) ≥ s

)
+Kt−3 (51)

= Pr

(∑t
τ=1 1{kτ=k}rτ
nk(t)

− µk > ∆k −
√

2 log t

nk(t)
, nk(t) ≥ s

)
+Kt−3 (52)

≤ t exp

−2s

(
∆k −

√
2 log t

s

)2
+Kt−3 (53)

≤ t−3 exp

(
−2s

(
∆2
k − 2∆k

√
2 log t

s

))
+Kt−3 (54)

≤ 2(K + 1)t−3 for all t > t0. (55)

We have (46) holds because of the fact that P (A) = P (A|B)P (B) + P (A|Bc)P (Bc), Inequality

(48) follows from Lemma 3 and from the fact that Ik(t) = min` Ik,`(t). From the definition of

Ik,k(t) we have (50). Inequality (53) follows from Hoeffding’s inequality and the term t before

the exponent in (53) arises as the random variable nk(t) can take values from s to t (Lemma 1).

Inequality (55) follows from the fact that s > t
2K

and ∆k ≥ 4
√

2K log t0
t0

for some constant t0 > 0.

Lemma 6. Let nm1
k (t) denote the number of times arm k has been sampled as m1(t) till round

t. If ∆min ≥ 4
√

2K log t0
t0

for some constant t0 > 0, then,

Pr

(
nm1
k (t) >

t

K
, E
)
≤ (K + 1)3

t2
∀t > Kt0.
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Proof. We expand Pr
(
nk(t) >

t
K

)
as,

Pr

(
nm1
k (t) ≥ t

K
, E
)

= Pr

(
nm1
k (t) ≥ t

K
, E
∣∣∣nm1
k (t− 1) ≥ t

K
, E
)

Pr

(
nm1
k (t− 1) ≥ t

K
, E
)

+

Pr

(
m1(t) = k, nm1

k (t− 1) =
t

K
− 1, E

)
(56)

≤ Pr

(
nm1
k (t− 1) ≥ t

K
, E
)

+ Pr

(
m1(t) = k, nm1

k (t− 1) =
t

K
− 1, E

)
(57)

≤ Pr

(
nm1
k (t− 1) ≥ t

K
, E
)

+ (2K + 2)(t− 1)−3 ∀(t− 1) > t0. (58)

Here, (58) follows from Lemma 5.

This gives us

Pr

(
nm1
k (t) ≥ t

K
, E
)
− Pr

(
nm1
k (t− 1) ≥ t

K
, E
)
≤ (2K + 2)(t− 1)−3, ∀(t− 1) > t0.

Now consider the summation
t∑

τ= t
K

Pr

(
nm1
k (τ) ≥ t

K
, E
)
− Pr

(
nm1
k (τ − 1) ≥ t

K
, E
)
≤

t∑
τ= t

K

(2K + 2)(τ − 1)−3.

This gives us,

Pr

(
nm1
k (t) ≥ t

K
, E
)
− Pr

(
nm1
k

(
t

K
− 1

)
≥ t

K
, E
)
≤

t∑
τ= t

K

(2K + 2)(τ − 1)−3.

Since Pr
(
nm1
k

(
t
K
− 1
)
≥ t

K
, E
)

= 0, we have,

Pr

(
nm1
k (t) ≥ t

K
, E
)
≤

t∑
τ= t

K

(2K + 2)(τ − 1)−3 (59)

≤ (K + 1)

(
t

K
− 2

)−2

∀t > Kt0. (60)

The last step (60) follows from the fact that
∑t

τ=t/K(τ − 1)−3 ≤
∫∞
τ=t/K−1

(τ − 1)−3.

C. Probability of sampling a non-competitive arm at round t

For ease of presentation we denote W to be the event that m1(t),m2(t) 6= k∗.
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Lemma 7. The probability of sampling a non-competitive arm at round t, jointly with the event

E , is bounded as

Pr ((m1(t) /∈ C ∪m2(t) /∈ C),W , E) ≤ 2(K + 1)K

t3
+
K(K + 1)3

t2
∀t > Kt0.

Proof.

Pr((m1(t) /∈ C ∪m2(t) /∈ C), E) =

Pr

(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t

K

)
+

Pr

(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) <

t

K

)
(61)

≤ Pr

(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t

K

)
+ Pr

(
nk∗(t) <

t

K
, E
)

(62)

≤ Pr

(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t

K

)
+ Pr

(
nm1
k∗ (t) <

t

K
, E
)

(63)

≤ Pr

(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t

K

)
+
∑
k 6=k∗

Pr

(
nm1
k (t) ≥ t

K
, E
)

(64)

≤
∑
k/∈C

Pr

(
(m1(t) = k ∪m2(t) = k),W , E , nk∗(t) ≥

t

K

)
+
∑
k 6=k∗

Pr

(
nm1
k (t) ≥ t

K
, E
)

(65)

≤ 2(K + 1)K

t3
+
K(K + 1)3

t2
∀t > Kt0 (66)

In (63), nm1
k∗ (t) denotes the number of times arm k∗ was samples as m1(t) till round t. As

nm1
k∗ (t) < nk∗(t), we have (63). The last step follows from Lemma 4 and Lemma 6.

D. Intermediate steps to analyse samples obtained from competitive arms

For k 6= k∗, define τk to be the first integer such that Bk

(
nk,

δ
2K

)
< ∆k

4
and define τk∗ = τk(2) .

We call an arm k to be GOOD at round t, if Bk

(
nk,

δ
2K

)
≤ ∆k

4
, i.e., an arm is GOOD if it has

been sampled significant number of times till round t, i.e., nk(t) ≥ τk. Otherwise, the arm is

called BAD. We denote µref as
µk∗+µ

k(2)

2
, i.e., the average of the mean reward of best and second

best arm. We will first show that an arm k 6= k∗ being GOOD implies that its psuedoUCB index
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is below µref, i.e., nk > τk ⇒ Ũk,k
(
nk,

δ
2K

)
< µref. Consider Ũk,k

(
nk,

δ
2K

)
for k 6= k∗, nk > τk.

Under E , we have

µ̂k +Bk

(
nk,

δ

2K

)
≤ µk + 2Bk

(
nk,

δ

2K

)
(67)

= µref + 2Bk

(
nk,

δ

2K

)
+

(µk − µk∗) + (µk − µk(2))

2
(68)

≤ µref + 2Bk

(
nk,

δ

2K

)
− ∆k

2
(69)

≤ µref (70)

Here (67) follows from the fact that, under E , µ̂k ≤ µk +Bk

(
nk,

δ
2K

)
. The last step follows as

arm k is GOOD, i.e., Bk

(
nk,

δ
2K

)
≤ ∆k

4
.

Using a similar argument for k∗, we can prove that Arm k∗ being GOOD, i.e., nk∗ >

τk∗ ⇒ Lk∗
(
nk∗ ,

δ
2K

)
> µref,. In addition to this, nk∗ > τk∗ (i.e., Arm k∗ being GOOD), also

implies that Ũk,k∗ < µref for k /∈ C as we present below. Under E , we have the bound on

Ũk,k∗
(
nk∗ ,

δ
2K

)
= φ̂k,k∗ +Bk∗

(
nk∗ ,

δ
2K

)
, as follows,

φ̂k,k∗ +Bk∗

(
nk∗ ,

δ

2K

)
≤ φk,k∗ + 2Bk∗

(
nk∗ ,

δ

2K

)
(71)

≤ µk(2) + 2Bk∗

(
nk∗ ,

δ

2K

)
(72)

≤ µk(2) + 2
∆min

4
(73)

≤ µref (74)

The inequality (72) follows from the fact that arm k /∈ C, i.e., φk,k∗ < µk(2) . We now use this

observation to list four possible scenarios under which algorithm does not stop and bound each

individual term to prove the statement of Theorem 2.

Define R(t) to be the event that Ik∗(t) < µk∗ , i.e., R(t) = {Ik∗(t) > µk∗}. By Lemma 3,

Pr(R(t)) ≤ Kt−3.

Lemma 8. If the algorithm has not stopped at round t and the event E holds true, at least one

of the following occurs

1) Event R(t) does not occur,

2) m1(t) or m2(t) is Non-Competitive and m1(t),m2(t) 6= k∗

3) (m1(t) = k∗ is BAD and m2(t) /∈ C) or (m2(t) = k∗ is BAD and m1(t) /∈ C)
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4) m1(t),m2(t) ∈ C and either m1(t) is BAD or m2(t) is BAD.

Proof. We prove this by contradiction. We consider the event that all the four cases listed above

do not occur jointly and show that such a situation cannot occur if algorithm has not stopped till

round t under E . The proof technique is inspired from the analysis done in [7] but needed some

modification to prove the result for C-LUCB algorithm in a correlated bandit environment. Let’s

break down the scenario where all of the four events listed in Lemma 8 do not occur and look

at each of them individually.

Case 1:

{m1(t) = k∗, m1(t) is GOOD }∩ {m2(t) 6= k∗,m2(t) ∈ C, m2(t) is GOOD }∩R(t)∩{t < T }.
We note the following two things in this case,

1) m1(t) = k∗ is GOOD ⇒ Lk∗
(
nk∗ ,

δ
2K

)
> µref.

2) m2(t) = ` 6= k∗ is GOOD ⇒ Ũ`,`
(
n`,

δ
2K

)
< µref.

As we have, Lk∗
(
nk∗ ,

δ
2K

)
> Ũ`

(
n`,

δ
2K

)
at round t, arm ` cannot belong the the set of active

arms At and hence cannot be selected as m2(t).

Case 2:

{m1(t) 6= k∗,m1(t) ∈ C, m1(t) is GOOD }∩ {m2(t) = k∗, m2(t) is GOOD }∩R(t)∩{t < T }.
In case 2, we make the following observations

1) m1(t) = ` 6= k∗ is GOOD ⇒ Ũ`,`
(
n`,

δ
2K

)
< µref.

2) m2(t) = k∗ is GOOD ⇒ Lk∗
(
nk∗ ,

δ
2K

)
> µref.

As we have, Lk∗
(
nk∗ ,

δ
2K

)
> Ũ`

(
n`,

δ
2K

)
at round t, arm ` cannot belong the the set of active

arms At and hence cannot be selected as m1(t).

Case 3:

{m1(t) 6= k∗,m1(t) ∈ C, m1(t) is GOOD}∩{m2(t) 6= k∗,m2(t) ∈ C, m2(t) is GOOD}∩R(t)∩
{t < T }.

For case 3, we see that

1) m1(t) = `1 6= k∗ is GOOD ⇒ Ũ`1,`1
(
n`1 ,

δ
2K

)
< µref.

2) m2(t) = `2 6= k∗ is GOOD ⇒ Ũ`2,`2
(
n`2 ,

δ
2K

)
< µref, it further implies that

min
(
I`2(t), Ũ`2,`2

(
n`2 ,

δ
2K

))
≤ µref.

As arm k∗ is not selected, it implies that either Ik∗(t) ≤ µref or Ũk∗,k∗
(
nk∗ ,

δ
2K

)
≤ µref. By R(t),

Ik∗(t) ≥ µk∗ > µref and with event E , Ũk∗,k∗
(
nk∗ ,

δ
2K

)
> µk∗ > µref. This shows that case 3

cannot occur and leads to a contradiction.
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Case 4:

{(m1(t) = k∗ is GOOD, m2(t) = ` /∈ C)∪(m2(t) = k∗ is GOOD, m1(t) = ` /∈ C)}∩R(t)∩{t <
T }.

For Case 4, we see from (70), (74) that

1) k∗ is GOOD ⇒ Lk∗
(
nk∗ ,

δ
2K

)
> µref.

2) k∗ is GOOD ⇒ Ũ`,k∗
(
nk∗ ,

δ
2K

)
< µref.

As Ũ`
(
δ

2K

)
< Ũ`,k∗

(
nk∗ ,

δ
2K

)
< µref < Lk∗

(
nk∗ ,

δ
2K

)
, arm ` cannot be in the set of active arms

at round t and hence cannot be sampled at round t. Therefore, all the four cases listed above

cannot occur and we have a contradiction.

This proves the statement of Lemma 8, as at least one of the events listed in Lemma 8 must

occur for the algorithm to proceed further. This analysis follows similar steps as that in [7], [13]

but needed further modifications to prove statement for our C-LUCB algorithm.

Lemma 9. Let T (B) denote the total number of times that the events (3) or (4) of Lemma 8

occur. We have that T (B) is upper bounded by
∑

k∈C
ζ

∆2
k

log

2K log

(
1

∆2
k

)
δ

 under the event E .
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Proof. We now bound T (B) under the event E ,

T (B) =
∞∑
t=1

1

(
{m1(t) = k∗ is BAD,m2(t) /∈ C} ∪ {m2(t) = k∗is BAD,m1(t) /∈ C}

⋃
{m1(t) ∈ C is BAD or m2(t) ∈ C is BAD}

)
(75)

≤
∞∑
t=1

1

(
({m1(t) is k∗ or m2(t) is k∗} ∩ {k∗ is BAD})

⋃
({m1(t) ∈ C is BAD or m2(t) ∈ C is BAD})

)
(76)

=
∞∑
t=1

∑
k∈C

1

(
({m1(t) is k∗ or m2(t) is k∗} ∩ {k∗ is BAD})

⋃
= ({m1(t) is k or m2(t) is k} ∩ {k is BAD })

)
(77)

=
∞∑
t=1

∑
k∈C

1 ({m1(t) is k or m2(t) is k} ∩ {k is BAD }) (78)

=
∞∑
t=1

∑
k∈C

1 ({m1(t) is k or m2(t) is k} ∩ {nk(t) ≤ τk}) (79)

≤
∑
k∈C

τk (80)

The last (80) holds from the fact that if nk(t) ≤ τk and m1(t) is k or m2(t) is k, then arm k gets

sampled and nk(t+ 1) = nk(t) + 1, this can only occur τk times before nk(t) > τk. For anytime

confidence intervals Bk

(
nk,

δ
2K

)
, first integer τk such that Bk

(
nk,

δ
2K

)
< ∆k

4
is upper bounded

by ζ
∆2
k

log

2K log

(
1

∆2
k

)
δ

 where ζ > 0 is a constant depending on the tightness of confidence

interval Bk(nk, δ) [12]. The tighter the confidence interval, smaller is the constant ζ . Due to this,

we get a bound on T (B) under the event E as,

T (B) ≤
∑
k∈C

ζ

∆2
k

log

2K log
(

1
∆2
k

)
δ

 .

As the probability of event E is at least 1− δ, we get that T (B) ≤∑k∈C
ζ

∆2
k

log

2K log

(
1

∆2
k

)
δ


with probability 1− δ. In Section V, we denoted T (C) as the total number of rounds in which

m1(t),m2(t) ∈ C and Ik∗(t) > µk∗ and similarly T (∗) as the total number of rounds in which

m1(t) = k∗,m2(t) /∈ C or m2(t) = k∗,m1(t) /∈ C. From Lemma 8, we note that T (∗) + T (C)
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is equivalent to T (B) on which we derived a bound above. Due to this, T (C) + T (∗) = T (B) ≤∑
k∈C

ζ
∆2
k

log

2K log

(
1

∆2
k

)
δ

 under the event E .

E. Proof of Theorem 2

We now bound the total number of rounds played by C-LUCB algorithm under the event E .

From Lemma 8, we note that if the algorithm has not stopped at round t under the event E , it

implies that at least one of the following events must be true at round t,

1) Event R(t) does not occur, i.e., Ik∗(t) < µ∗k

2) m1(t) or m2(t) is Non-Competitive and m1(t),m2(t) 6= k∗,

3) (m1(t) = k∗ is BAD and m2(t) /∈ C) or (m2(t) = k∗ is BAD and m1(t) /∈ C)

4) m1(t),m2(t) ∈ C and either m1(t) is BAD or m2(t) is BAD.

From Lemma 3 we see that Pr(R(t)) ≤ K
t3

and the result from Lemma 7 gives us a bound on

Pr((m1(t) /∈ C ∪m2(t) /∈ C), (m1(t),m2(t) 6= k∗), E). The result from Lemma 9 shows that the

third and fourth event occur at most
∑

k∈C
ζ

∆2
k

log

2K log

(
1

∆2
k

)
δ

 times. Combining these, we

get our desired bound on the sample complexity result.
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Proof.

E [T |E ] =
∞∑
t=1

E [1(t = T |E)] (81)

≤
∞∑
t=1

1(R(t)|E) + E
[
T (B)|E)

]
+

∞∑
t=1

E [1(m1(t) or m2(t) /∈ C,m1(t) and m2(t) 6= k∗|E)] (82)

=
∞∑
t=1

Pr(R(t), E)× 1

Pr(E)
+ E

[
T (B)|E)

]
+

∞∑
t=1

Pr ((m1(t) or m2(t) /∈ C),m1(t) and m2(t) 6= k∗, E)× 1

Pr(E)
(83)

≤
∞∑
t=1

1

1− δ ×
K

t3
+
∑
k∈C

ζ

∆2
k

log

2K log
(

1
∆2
k

)
δ

+

Kt0
1− δ +

1

1− δ
∞∑

t=Kt0+1

(
2(K + 1)K

t3
+
K(K + 1)3

t2

)
(84)

≤ 3K

2(1− δ) +
Kt0
1− δ +

1

1− δ ×
(

2

t20
+

(K + 1)3

t0

)
+
∑
k∈C

ζ

∆2
k

log

2K log
(

1
∆2
k

)
δ


(85)

By noting that the C-LUCB samples two arms at each round, we get the sample complexity

result stated in Theorem 2.

F. Proof for Theorem 1

Proof. To prove theorem 1, we define three events E1, E2 and E3 below. Let E1 be the event that

empirical mean of all arm lie within their confidence intervals uniformly for all t ≥ 1

E1 =

{
∀t ≥ 1,∀k ∈ K, µ̂k(t)−Bk

(
nk(t),

δ

2K

)
≤ µk ≤ µ̂k +Bk

(
nk(t),

δ

2K

)}
(86)

Define E2 to be the event that empirical pseudo-reward of optimal arm with respect to all other

arms lie within their crossUCB indices uniformly for all t ≥ 1, i.e.,

E2 =

{
∀t ≥ 1,∀` ∈ K, φk∗,` ≤ φ̂k∗,`(t) +B`

(
n`(t),

δ

2K

)}
(87)
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Similarly define E3 to be the event that the empirical pseudo-reward of the sub-optimal arms

with respect to the optimal arm lies within their crossUCB indices uniformly for all t ≥ 1, i.e.,

E3 =

{
∀t ≥ 1, ∀` ∈ K, φ`,k∗ ≤ φ̂`,k∗(t) +Bnk∗

(
nk∗(t),

δ

2K

)}
(88)

Furthermore, we define E to be the intersection of the three events, i.e.,

E = E1 ∩ E2 ∩ E3. (89)

Due to the nature of anytime confidence intervals (See (3)) and union bound over the set of

arms, we have Pr(Ec1) ≤ δ
2
, Pr(Ec2) ≤ δ

4
and Pr(Ec3) ≤ δ

4
giving us Pr(Ec) ≤ δ. We now show

that under the event E , the C-LUCB algorithm cannot stop with an arm k 6= k∗. We do that

through a proof by contradiction.

Suppose, the algorithm stops with arm k 6= k∗, i.e., arm k is the only arm in set At. In such

a scenario, ∃τ, k 6= k∗ : Ũk∗
(
τ, δ

2K

)
< Lk

(
τ, δ

2K

)
. This can only occur if one of the following

events occur,

1) Ũk∗,k∗
(
τ, δ

2K

)
< Lk

(
τ, δ

2K

)
)

2) Ũk∗,`
(
τ, δ

2K

)
< Lk

(
τ, δ

2K

)
` 6= k∗

See that under the event E , Ũk∗,`
(
τ, δ

2K

)
> µk∗ and Lk

(
τ, δ

2K

)
< µk ∀τ, k. This shows that

under the event E , Ũk∗
(
τ, δ

2K

)
> Lk

(
τ, δ

2K

)
∀k, τ as µk∗ > µk ∀k 6= k∗. This implies that

the algorithm returns the best arm with probability at least 1− δ as Pr(Ec) ≤ δ.

G. 1− δ Correctness of C-LUCB++

We now show that the C-LUCB++ algorithm declares the arm k∗ as the best arm with

probability at least 1− δ.

Proof. To prove the correctness of C-LUCB++, we use similar arguments as done in the proof

of Theorem 1 for the C-LUCB algorithm. In particular, we define an event E+ that holds true

with at least 1− δ probability and show that the C-LUCB++ algorithm always stops with the

best arm under the event E+.

We define three events E+
1 , E+

2 and E+
3 below. Let E+

1 be the event that empirical mean of all

arm k 6= k∗ lie within their confidence intervals uniformly for all t ≥ 1

E+
1 =

{
∀t ≥ 1,∀k ∈ K, µ̂k(t)−Bk

(
nk(t),

δ

3K

)
≤ µk ≤ µ̂k +Bk

(
nk(t),

δ

3K

)}
(90)
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Define E+
2 to be the event that empirical pseudo-reward of optimal arm with respect to all other

arms lie within their confidence intervals uniformly for all t ≥ 1, i.e.,

E+
2 =

{
∀t ≥ 1,∀` ∈ K, φk∗,` ≤ φ̂k∗,`(t) +B`

(
n`(t),

δ

3K

)}
(91)

Additionally, define E+
3 as the event where empirical mean of arm k∗ lies below the upper

confidence index of arm k∗ (constructed with width δ/4) uniformly for all t ≥ 1, i.e.,

E+
3 =

{
∀t ≥ 1, µk∗ ≤ µ̂k∗(t) +Bk∗

(
nk∗(t),

δ

4

)}
(92)

Furthermore, we define E+ to be the intersection of the three events, i.e.,

E+ = E+
1 ∩ E+

2 ∩ E+
3 (93)

Due to the nature of anytime confidence intervals (See (3)) and union bound over the set of arms,

we have Pr(E+
1 ) ≥ 1− δ

3
, Pr(E+

2 ) ≥ 1− δ
6

and Pr(E+
3 ) ≥ 1− δ

2
, giving us Pr(E+) ≥ 1− δ. We

now show that under the event E+, the C-LUCB++ algorithm cannot stop with an arm k 6= k∗.

We do that through a proof by contradiction.

Suppose, the algorithm stops with arm k 6= k∗, i.e., arm k is the only arm in set At or

max 6̀=k Ũ`,`
(
τ, δ

4

)
< Lk

(
δ

4K

)
. In such a scenario, ∃τ, k 6= k∗ : Ũk∗

(
τ, δ

3K

)
< Lk

(
τ, δ

3K

)
or

Ũk∗,k∗
(
τ, δ

4

)
< Lk

(
δ

4K

)
This can only occur if one of the following events occur,

1) Ũk∗,k∗
(
τ, δ

4

)
< Lk

(
τ, δ

4K

)
< Lk

(
τ, δ

4K

)
2) Ũk∗,`

(
τ, δ

3K

)
< Lk

(
τ, δ

3K

)
` 6= k∗

See that under the event E+, Ũk∗,`
(
τ, δ

3K

)
> µk∗ , Ũk∗,k∗

(
τ, δ

4

)
< µk∗ and Lk

(
τ, δ

3K

)
<

µk ∀τ, k. This shows that under the event E+, Ũk∗,k∗
(
τ, δ

4

)
> Lk

(
τ, δ

3

)
∀k, τ and Ũk∗,`

(
τ, δ

3K

)
>

Lk
(
τ, δ

3K

)
∀` 6= k∗ as µk∗ > µk ∀k 6= k∗. This implies that the algorithm returns the best

arm with probability at least 1− δ as Pr(E+) ≥ 1− δ.
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